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Potential �ow around obstacles using the scaled boundary
�nite-element method
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SUMMARY

The scaled boundary �nite-element method is a novel semi-analytical technique, combining the advan-
tages of the �nite element and the boundary element methods with unique properties of its own. The
method works by weakening the governing di�erential equations in one co-ordinate direction through
the introduction of shape functions, then solving the weakened equations analytically in the other (ra-
dial) co-ordinate direction. These co-ordinate directions are de�ned by the geometry of the domain
and a scaling centre. The method can be employed for both bounded and unbounded domains. This
paper applies the method to problems of potential �ow around streamlined and blu� obstacles in an
in�nite domain. The method is derived using a weighted residual approach and extended to include
the necessary velocity boundary conditions at in�nity. The ability of the method to model unbounded
problems is demonstrated, together with its ability to model singular points in the near �eld in the case
of blu� obstacles. Flow �elds around circular and square cylinders are computed, graphically illustrating
the accuracy of the technique, and two further practical examples are also presented. Comparisons are
made with boundary element and �nite di�erence solutions. Copyright ? 2003 John Wiley & Sons,
Ltd.
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domains; singular points

1. INTRODUCTION

The scaled boundary �nite-element method is a novel and semi-analytical approach to the so-
lution of partial di�erential equations developed by Wolf and Song. Until recently the method
has mainly been used for the solution of problems of elasto-statics and elasto-dynamics. The
method was originally derived to compute the dynamic sti�ness of an unbounded domain [1],
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using a ‘cloning’ technique in which the analytical limit is taken as the width of the cloned
�nite-element cell tends to zero. The method proved to be more general than initially en-
visaged, with later developments allowing analysis of incompressible material and bounded
domains [2], and the inclusion of body loads [3]. The complexity of the original derivation of
the technique led to the development of a weighted residual formulation [4, 5], and recently
a simpli�ed virtual work derivation for elastostatics [6, 7].
Formulation of the method for solution of a two-dimensional scalar wave equation is avail-

able in [2], and has been applied to the problem of di�usion in an unbounded medium [8].
Neglecting the time-varying terms leads to the Laplace equation. However, so far only prob-
lems involving the out-of-plane motion of a wedge have been addressed by solution of the
Laplace equation in this way [3, 9].
Although potential �ow situations may be addressed by �nite element and �nite di�erence

methods, problems involving the perturbation of a uniform �ow of in�nite extent by an obsta-
cle are often solved by boundary element methods, as this overcomes the need to arti�cially
truncate the solution domain in some way. Boundary element methods most commonly ob-
tain an approximate solution for the velocity potential. However, in practical applications the
velocity is often the most important characteristic of the �ow, and must then be obtained
from the potential �eld by some type of numerical di�erentiation. An alternative boundary
element approach [10] can be used to obtain the velocity �eld directly. Obstacles with sharp
corners cause additional problems, as the velocity is in general singular at the corners. To
obtain accurate results using the boundary element method, a priori knowledge of the form
of the singularities can be used to allow their removal from the boundary element solution
process [11].
The scaled boundary �nite-element method has several features that make it ideal for solving

problems of potential �ow around obstacles. The unbounded domain can be handled accurately
without arbitrary truncation. Singular points present in the �ow �eld around blu� objects can
be treated easily, leading to highly accurate solution with very few degrees of freedom, and
without any assumptions being made about the form of the singularity. Bodies of arbitrary
shape can be modelled in the normal �nite element manner, but only the surface need be
discretized. The method can be used with a substructuring technique, permitting the interaction
between a number of obstacles to be determined.
In contrast to the boundary element and �nite di�erence methods, the supercon-

vergent patch recovery technique [12] can be used to obtain an improved velocity �eld [7], and
if desired the Zienkiewicz–Zhu error estimator [13] can be used to approximate the error
over the entire unbounded domain. This permits application of simple adaptive techniques
[14].
This paper uses the scaled boundary �nite-element method to address problems

of streamlined and blu� objects perturbing a uniform potential �ow �eld of in�nite extent.
A weighted residual derivation of the method for solution of the Laplace equation is
�rst presented, and new techniques are developed to permit the method to model uniform
�ow �elds. The classical problems of �ow around circular and square cylinders
are addressed, and the method is shown to yield excellent results with very few degrees
of freedom, and to out-perform the boundary element method. Two practical examples are
also presented, one being �ow around a streamlined object of complex shape, the other
being �ow around two interacting blu� objects, and comparisons made with �nite di�erence
solutions.
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2. THE SCALED BOUNDARY FINITE-ELEMENT METHOD
FOR POTENTIAL FLOW

Potential �ow in two dimensions is governed by the Laplace equation, which may be expressed
as

∇2�=0 (1)

within a domain �. Here � is the scalar potential, which may be related to the �ow velocity
by

v= −∇� (2)

On the boundary of the domain � either the value of the potential or the �ow velocity must
be speci�ed. Designating the entire boundary by �, the potential boundary by �� and the
velocity boundary by �v, the boundary conditions may be speci�ed as

�= �� on �� (3)

and

�;n = − �vn on �v (4)

where n designates the normal to the boundary, the overbar denotes prescribed values and
�;n is the partial derivative of potential with respect to n. Postponing discussion of prescribed
potential boundary conditions to a later stage and prescribing the velocity over the entire
boundary (�v=�), Equations (1) and (4) can be expressed in weighted residual form (e.g.
Reference [15]) as ∫

�
∇Tw∇� d�−

∫
�
w �vn d�=0 (5)

where w is any weighting function. An approximate solution �h may satisfy this equation for
a limited range of weighting functions. The larger the range, the more accurate will be the
approximation.
The scaled boundary �nite-element method is restricted to domains that can be de�ned

by the scaling of a single piecewise-smooth curve S relative to a scaling centre (x0; y0).
(Although this requirement may seem restrictive, many practical problems can be modelled
using such domains when suitable substructuring is employed.) The de�ning curve S is taken
to be speci�ed by x(s)= x0+xs(s) and y(s)=y0+ys(s), where s06s6s1. The circumferential
co-ordinate s measures the distance anticlockwise around the curve, and is a function of �,
where � is indicated in Figure 1. A further restriction on S is that the derivative ds=d� must
not vanish at any point on the curve. The curve may be closed or open.
A normalized radial � co-ordinate is de�ned to have unit value at the curve S. Each value

of � consequently de�nes a scaled version of the curve S. Any point in the two-dimensional
plane can be speci�ed by the scaled boundary co-ordinates � and s. The mapping between
this co-ordinate system and the Cartesian co-ordinate system can be expressed by the scaling
equations

x= x0 + �xs(s) (6a)
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Figure 1. Scaled boundary co-ordinate de�nition: left, with a closed de�ning curve; right,
with an open de�ning curve.

y = y0 + �ys(s) (6b)

The solution domain � is de�ned as the region de�ned by �06�6�1 and s06s6s1. The
boundary of this domain � is seen to have two sections that are similar to curve S, and two
sections that are straight lines radiating from the scaling centre. The two straight sections are
termed side-faces. If the curve is closed, the side-faces will coincide.
The scaled boundary �nite-element method seeks an approximate solution to Equations (1),

(3) and (4) in the form

�h(�; s)=N(s)a(�) (7)

This represents a discretization of the curve S only by shape functions N(s). These shape
functions can be de�ned locally over line elements in the conventional �nite element manner,
with the speci�cation of n nodes on the curve. The n nodal functions represented by the vector
a(�) are analogous to nodal values in the standard �nite element method. At each node i the
function ai(�) represents the variation of potential in the radial direction. At any value of
� the shape functions interpolate between the nodal potential values in the circumferential
direction. A typical scaled boundary �nite element is illustrated in Figure 1, together with the
region of the domain modelled by this element.
Unbounded domains can be treated conveniently by taking �0 = 1 and �1 =∞. Bounded

domains containing the scaling centre are modelled by taking �0 = 0 and �1 = 1. In such cases
the de�ning curve S becomes the discretized portion of the boundary. (The side-faces are not
discretized.)
Using conventional techniques the operator ∇ can be mapped to the scaled boundary co-

ordinate system (see Appendix A) by

∇= b1(s) @@� +
1
�
b2(s)

@
@s

(8)

where b1(s) and b2(s) are dependent only on the de�nition of S. Substituting Equations (7)
and (8) into Equation (2), the approximate velocities can be expressed in terms of the scaled
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boundary co-ordinates as

vh(�; s)= − B1(s)a(�); �−1� B2(s)a(�) (9)

where, for convenience,

B1(s) = b1(s)N(s) (10)

B2(s) = b2(s)N(s); s (11)

Using the Galerkin approach, the weighting function w can be formulated using the same
shape functions along S as the approximation for the potential (Equation (7)).

w(�; s)=N(s)w(�)=w(�)TN(s)T (12)

This restricts the form of the weighting function in the circumferential direction, but not in the
radial direction. Substituting Equations (7) and (12) into Equation (5), the weighted residual
statement becomes∫

�
[∇N(s)w(�)]T[∇N(s)a(�)] d�−

∫
�
w(�)TN(s)T �vn d�=0 (13)

With the addition of Equations (8), (10) and (11), Equation (13) becomes

∫
�

[
B1(s)w(�); �+

1
�
B2(s)w(�)

]T [
B1(s)a(�); �+

1
�
B2(s)a(�)

]
d�

−
∫
�
w(�)TN(s)T �vn d�=0 (14)

Expanding and integrating the domain integrals containing w(�); � with respect to � using
Green’s theorem, and noting that d �= |J |� d� ds (Equation (A6)), yields

∫
S
w(�1)TB1(s)TB1(s)�1a(�1); � |J | ds−

∫
S
w(�0)TB1(s)TB1(s)�0a(�0); � |J | ds

−
∫ �1

�0

∫
S
w(�)TB1(s)TB1(s){a(�); �+�a(�); �� }|J | ds d�

+
∫
S
w(�1)TB1(s)TB2(s)a(�1); � |J | ds−

∫
S
w(�0)TB1(s)TB2(s)a(�0); � |J | ds

−
∫ �1

�0

∫
S
w(�)TB1(s)TB2(s)a(�); � |J | ds d�

+
∫ �1

�0

∫
S
w(�)TB2(s)TB1(s)a(�); � |J | ds d�+

∫ �1

�0

∫
S
w(�)TB2(s)TB2(s)

1
�
a(�) |J | ds d�
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−
∫
S
w(�1)TN(s)T �vn(�1; s)�1 ds−

∫ �1

�0
w(�)TN(s0)T �vn(�; s0)|J | d�

+
∫
S
w(�0)TN(s)T(− �vn(�0; s))�0 ds+

∫ �1

�0
w(�)TN(s1)T(− �vn(�; s1))|J | d�=0 (15)

Note that during integration of the normal �ows along the boundary, reversal of the direction
of the integration results in reversal of the sign of the normal velocity in the last two terms.
The following coe�cient matrices are now introduced for convenience.

E0 =
∫
S
B1(s)TB1(s)|J | ds (16a)

E1 =
∫
S
B2(s)TB1(s)|J | ds (16b)

E2 =
∫
S
B2(s)TB2(s)|J | ds (16c)

Fs(�) =N(s0)T(− �vn(�; s0))|J (s0)|+N(s1)T(− �vn(�; s1))|J (s1)| (16d)

Simplifying Equation (15) by introducing these coe�cient matrices and collecting common
terms

w(�1)T
[
E0�1a(�1); �+ET1a(�1) +

∫
S
N(s)T(− �vn(�1; s))�1 ds

]

−w(�0)T
[
E0�0a(�0); �+ET1a(�0)−

∫
S
N(s)T(− �vn(�0; s))�0 ds

]

−
∫ �1

�0
w(�)T

{
E0�a(�); ��+[E0 + ET1 − E1]a(�); �−E2

1
�
a(�)− Fs(�)

}
d�=0 (17)

This equation will be satis�ed for any set of weighting functions w(�) providing the following
conditions are met.

∫
S
N(s)T(− �vn(�0; s))�0 ds = E0�0a(�0); �+ET1a(�0) (18)

∫
S
N(s)T(− �vn(�1; s))�1 ds = −E0�1a(�1); �−ET1a(�1) (19)

E0�2a(�); ��+[E0 + ET1 − E1]�a(�); �−E2a(�) = �Fs(�) (20)

Equation (20) is termed the scaled boundary �nite-element equation. E�ectively the Laplace
equation has been weakened in the circumferential direction in a �nite element manner, but
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remains strong in the radial direction. Equation (18) indicates a discretization of the inner
portion of the boundary, which is a scaled version of the discretization of S, and relates the
integrated nodal �ows into the domain across this part of the boundary to the potential �eld
at the same nodes. In a similar manner, Equation (19) indicates a scaled discretization of the
outer portion of the boundary, and relates integrated nodal �ows into the domain across this
portion of the boundary to the boundary potential �eld.
Since the side-faces are not discretized, the variation of normal velocity remains analytical,

as indicated by Equation (16d). If curve S is closed, the side-faces coincide, and the �ow
across the side-faces is equal and opposite, so the term Fs(�) vanishes. This term also vanishes
if the side-faces are impermeable.

3. SOLUTION PROCESS

To permit domains modelled by the scaled boundary �nite-element method to be used either
alone or as substructures, the relationship between the potential and the integrated nodal �ows
over the discretized portion of the boundary will be obtained in the standard discrete form

Ha= f (21)

where a is a vector containing the potential values at the boundary nodes, f contains the
integrated �ows into the domain at the boundary nodes and H is an square matrix. Once H
has been constructed, boundary conditions can be applied to suitable subsets of a and f , and
the system of equations solved.
The construction of H will now be described. Equation (20) is considered initially in

homogenous form, corresponding to a closed de�ning curve S or impermeable side-faces. By
inspection, solutions to this di�erential equation take the form

a(�) = c1�−�1a1 + c2�−�2a2 + · · · (22)

where the exponents −�i and corresponding vectors ai may be interpreted as independent
potential �elds which closely satisfy the Laplace equation in the � direction. The constants ci
represent the contribution of each potential ‘mode’ to the solution, and are dependent on the
boundary conditions.
Each potential mode takes the form

ai(�)= �−�iai (23)

The vector ai can be identi�ed as the modal potentials at the nodes on the curve S, while �i
can be identi�ed as a modal scaling factor for the radial direction. Substituting this solution
into Equation (20) with Fs(�) = 0 yields the quadratic eigenproblem

[�2i E0 − �i[ET1 − E1]− E2]ai = 0 (24)

This eigenproblem can be solved using standard techniques, yielding 2n potential modes,
where n is the number of nodes used to discretize S, and hence is also the size of the
coe�cient matrices.
Bounded problems can be represented conveniently by taking �0 = 0 and �1 = 1. For such

problems only modes with �nite potential at the scaling centre will have non-zero integration
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constants. The modes for which the real parts of the eigenvalues are negative will satisfy this
requirement and will automatically satisfy Equation (18). The potential values at the boundary
nodes for each mode will be ai.
Similarly, unbounded domains can be represented by taking �0 = 1 and �1 =∞. Unbounded

domains generally require that the potential remains �nite at in�nity. Modes with eigenvalues
with positive real parts will satisfy this requirement, and will automatically satisfy Equation
(19). The potential values at the boundary nodes for each mode will also be ai.
One constant potential mode with unit values at all boundary nodes and an eigenvalue

of zero is also be admissible in both bounded and unbounded cases. Solution of the single
eigenproblem is found to yield n potential modes that are admissible for a bounded domain
containing the scaling centre, and n modes that are admissible for the unbounded domain
represented by the same de�ning curve. The subset of n �ow modes admissible for the type
of problem under consideration are used to form the columns of an n by n matrix A.
For any given set of boundary node potentials a the integration constants for the modes

may be determined as

c=A−1a (25)

where c is a vector containing n of integration constants.
The �ows into the domain required at the boundary nodes by each potential mode are

obtained for the bounded case by substituting Equation (23) into Equation (19) (which is
evaluated at �1 = 1) as

qi= − [ET1 − �E0]ai (26)

or for the unbounded case by substituting Equation (23) into Equation (18) (which is evaluated
at �0 = 1) as

qi=[ET1 − �E0]ai (27)

Placing the integrated normal �ows into the domain corresponding to the potential modes in
the columns of A in the columns of another n by n matrix Q, the total integrated normal
�ows into the domain at the discretized boundary corresponding to a set of boundary node
potentials a are

f =Qc=QA−1a (28)

and hence

H=QA−1 (29)

Equation (21) can then be solved for all boundary potentials which are not prescribed, after
which Equation (25) can be used to determine the integration constants. With the integration
constants known the entire potential �eld can be found by substituting Equation (22) into
Equation (7), and the velocity �eld by substituting Equation (22) into Equation (9).
In summary the solution process consists of: (i) construction of the coe�cient matrices

(Equation (16)), which can be done element by element over S in the usual �nite element
manner; (ii) solution of the quadratic eigenproblem (Equation (24)), extraction of the set
of n eigenvalues and vectors appropriate to the type of domain under consideration, and
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computation of the corresponding integrated normal �ows into the domain (Equations (26)
and (27)); (iii) construction of the H matrix for the domain (Equation (29)); (iv) solution
of Equation (21) for those boundary potentials and integrated �ows into the domain which
are not prescribed; (v) determination of the integration constants (Equation (25)); and (vi)
computation of the potential and velocity �elds (Equation (22) with Equations (7) and (9)).
As in the standard �nite element method, the velocity �eld obtained by Equation (9) is

raw and generally discontinuous in the circumferential direction between elements. A better
approximation can be obtained by applying the superconvergent patch recovery technique
[12]. The extension of this technique to the scaled boundary �nite-element method involves
the recovery of velocity �elds for each mode. This extension is covered in detail in Reference
[7]. The availability of an accurate recovered stress �eld allows the widely used Zienkiewicz–
Zhu error estimator [13] to be applied to the method. This in turn allows adaptive techniques
to be applied [14].

4. BOUNDARY CONDITIONS

4.1. Discretized boundary and in�nity

The class of problem under consideration here is that of �ow around shapes placed in a
uniform potential �ow �eld of in�nite extent. Assuming that the uniform �ow occurs in the
global x-direction and has magnitude V , the appropriate boundary conditions are

∇�=
{−V
0

}
at �=∞ (30)

and

�;n =0 at �=1 (31)

The �rst boundary condition implies in�nite positive potential at x= −∞ and in�nite negative
potential at x= +∞. Since the potential modes in the scaled boundary �nite-element method
are restricted to those with �nite potential at in�nity (and consequently no normal �ow at
in�nity), an additional particular solution to the Laplace equation must be included to permit
this boundary condition to be satis�ed. This solution is obtained by ignoring the second
boundary condition. (The second boundary condition will be satis�ed by combination of this
particular solution with the approximate general solution obtained by the scaled boundary
�nite-element method.)
Arbitrarily setting the potential at x=0 to zero, a particular solution for the potential �eld

satisfying Equation (30) is

�v= − Vx (32)

The subscript v is adopted to indicate this particular solution. Mapping to the scaled boundary
co-ordinate system

�v= − V (x0 + �xs(s)) (33)
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The derivative of this potential �eld with respect to the normal at the boundary of the obstacle
is

�v;n = − Vnx(s) (34)

where nx(s) is the x component of the unit vector normal to the surface at s. The integrated
nodal �ows into the domain across the discretized boundary due to the particular solution are
therefore

qv=
∫
�d

N(s)T(−Vnx(s)) d� (35)

where �d represents the discretized portion of the boundary. For the total integrated �ows
across the boundary to be zero (the second boundary condition)

Ha+ qv= 0 (36)

Solution of this equation yields nodal potential values as before, but now the particular solution
must be included in the �nal potential �eld.

�h(�; s)=N(s)a(�)− V (x0 + �xs(s)) (37)

The �nal velocity �eld then becomes

vh(�; s) = −B1(s)a(�); �−1� B2(s)a(�) +
{
V
0

}
(38)

4.2. Side-faces

Should the de�ning curve of the domain be open, and the boundary conditions on the side-
faces not be de�ned in terms of potential, for the velocity component normal to the side-faces
in the �nal velocity �eld to be zero

�vn(�; s0) + Vnx(�; s0)=0 (39)

and

�vn(�; s1) + Vnx(�; s1)=0 (40)

Since the side-faces are straight lines, the x component of the unit normal is constant for
each, and so

Fs(�)=N(s0)TVnx(s0)|J (s0)|+N(s1)TVnx(s1)|J (s1)|=Fs (41)

Inspection of the non-homogenous Equation (20) indicates the particular solution is of the
form

as(�)= �as (42)

Substitution of this particular solution into Equation (20) allows the potentials at the boundary
node points to be found as

as=[E0 − ET1 + E1 − E2]−1Fs (43)
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The nodal �ows into the domain generated at the discretized section of the boundary by this
particular solution are obtained by substitution of Equation (42) into Equation (26) or (27),
according to the type of domain. These �ows are denoted qs. The integration constants for the
general solution of the homogenous equation must now be determined to preserve boundary
conditions at the discretized boundary. Since the complete solution to the scaled boundary
�nite-element equation is now

a(�)= �as + c1�−�1a1 + c2�−�2a2 + · · · (44)

the potentials at the nodes on the discretized boundary (at �=1) are now related to the
integration constants by

c=A−1{a − as} (45)

while the boundary conditions will be satis�ed when

Qc+ qv + qs=0 (46)

leading to

H{a − as}+ qv + qs= 0 (47)

Application of appropriate boundary conditions to a allows solution of all nodal potentials,
after which the integration constants can be determined using Equation (45). Substitution of
Equation (44) into Equations (37) and (38) then provides the entire potential and velocity
�elds.

5. EXAMPLES

5.1. Flow around a circular cylinder

The accuracy of the method is �rst demonstrated using the classical example of �ow around
a circular cylinder. The exact solution of this problem is well known. If the potential at x=0
is taken as zero, the free stream velocity is V , and the radius of the cylinder is R the potential
�eld in standard polar co-ordinates is

�= − V
(
1 +

R2

r2

)
r cos � (48)

The variation of the tangential velocity around the cylinder follows as

vt = 2V sin � (49)

One quarter of the problem is modelled using a single unbounded domain, as illustrated
in Figure 2. The normal �ow on the �rst side-face is prescribed as zero, as is the potential
on the second side-face, enforcing the symmetry condition. The boundary of the cylinder
is discretized with three-noded quadratic elements. Three meshes are used to illustrate the
convergence of the method. The coarse mesh consists of two elements. The other two meshes
(referred to as intermediate and �ne) are constructed by binary subdivision of the coarse mesh,
and consist of four and eight elements respectively. These meshes are illustrated in Figure 3.
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Figure 2. Example 1, a circular cylinder in a uniform �ow.

Figure 3. Coarse, intermediate and �ne unbounded scaled boundary
�nite-element meshes for Example 1.

Figure 4 plots the variation of potential around the cylinder computed with the di�erent
meshes, along with the exact solution. All meshes provide excellent agreement with the exact
solution. Figure 5 plots the variation of the tangential velocity around the cylinder. The
velocity is recovered using the superconvergent patch recovery technique [12]. The results
obtained using the intermediate and �ne meshes are indistinguishable from the exact solution.
The velocity computed by the coarsest mesh shows some small error, but since only one patch
can be formed in the recovery process (and so the other nodal values must be extrapolated),
the results are still impressive.
This example has also been analysed by Lesnic et al. [10] using a boundary element

method and modelling the complete cylinder with meshes of 20, 40 and 80 elements. The
relative accuracy of comparable scaled boundary �nite-element solutions is determined by
modelling the quarter cylinder with meshes of 5, 10 and 20 elements. Table I lists the
computed dimensionless velocities in the x-direction computed at 5 points along the x-axis
with the scaled boundary �nite-element method (SBFEM), the velocities computed by Lesnic
et al. [10] using quadratic boundary elements (QBEM), and the analytical solution. At the
identical levels of discretization, the scaled boundary �nite-element results are more accurate,
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Figure 4. Variation of potential around circular cylinder (Example 1).
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Figure 5. Variation of tangential velocity around circular cylinder (Example 1).

and generally the convergence is uniform. With 20 elements on the quarter circle the error in
velocity at each point is less than 0.1%.
Similar accuracy is present at the cylinder surface. The dimensionless velocities computed

at four points around the quarter cylinder are presented in Table II. Once again, with identical
levels of boundary discretization the scaled boundary �nite-element method is more accurate,
and convergence with increasing mesh density is uniform.
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Table I. Variation in dimensionless velocity in x-direction computed for Example 1
with meshes of increasing density.

x=R SBFEM QBEM Analytical

1.1 0.1671 0.1873 0.1736
0.1731 0.1742
0.1735 0.1675

1.3 0.4037 0.4054 0.4083
0.4080 0.4056
0.4083 0.4053

1.5 0.5521 0.5557 0.5556
0.5553 0.5552
0.5555 0.5548

1.7 0.6513 0.6592 0.6540
0.6538 0.6548
0.6540 0.6542

1.9 0.7208 0.7260 0.7230
0.7229 0.7243
0.7230 0.7236

Table II. Variation in dimensionless velocities computed on the surface of the cylinder of
Example 1 with meshes of increasing density.

SBFEM QBEM Analytical

� (degrees) vx vy vx vy vx vy

0 −0:0078 0.0138 0.0400 −0:0080 0.0000 0.0000
−0:0005 0.0019 0.0100 0.0030
0.0000 0.0002 0.0090 0.0080

22.5 0.2951 −0:7073 0.2637 −0:7224 0.2928 −0:7071
0.2930 −0:7070 0.2795 −0:7192
0.2929 −0:7071 0.2826 −0:7182

45 1.0000 −0:9984 1.0290 −1:0290 1.0000 −1:0000
1.0000 −1:0000 1.0160 −1:0160
1.0000 −1:0000 1.0122 −1:0122

67.5 1.7049 −0:7073 1.7427 −0:7273 1.7071 −0:7071
1.7070 −0:7070 1.7297 −0:7213
1.7071 −0:7071 1.7134 −0:7198

90 2.0078 0.0143 2.0350 0.0000 2.0000 0.0000
2.0005 0.0020 2.0185 0.0000
2.0000 0.0003 2.0116 0.0000
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Figure 6. NACA 0012 wing section, showing node positions used in the coarse model (Example 2).

5.2. Flow around a wing section

The geometry of Example 1 is very simple, and the exact solution is very smooth. The second
example examines the practical problem of �ow around a wing section. The symmetric NACA
0012 wing section is chosen, as the de�nition of this section is freely available [16]. The
section is oriented so the axis of symmetry is aligned with the x-axis, allowing the Kutta–
Joukowski condition at the trailing edge to be satis�ed automatically.
Tangential velocity varies sharply around the leading and trailing edges of the section. The

low aspect ratio severely tests the scaled boundary �nite-element method, since some of the
circumferential elements near the trailing edge are almost parallel to lines radiating from the
scaling centre.
Advantage is taken of the symmetry of the problem, and half of the domain is modelled.

The boundary conditions discussed in the �rst example are applied. However, since there is no
vertical axis of symmetry along which the potential is prescribed, and since the potential �eld
can only be found to within a constant, the potential at the leading edge is de�ned arbitrarily
as zero to allow a solution to be obtained. Three meshes of increasing �neness are used. The
coarse mesh consists of eight three-noded quadratic elements. The locations of the nodes for
this model are indicated in Figure 6, which also plots the lower portion of the section for
clarity. Similar intermediate and �ne meshes, with 17 and 33 elements, respectively, are also
used. The scaling centre for all models is chosen to be a distance of 30% of the total section
length behind the leading edge.
Since the potential converges rapidly, only the velocity tangential to the surface is presented

in Figure 7. Although convergence of the velocity is not as rapid as in Example 1, the
velocities computed by the intermediate mesh are in close agreement with the �ne mesh. The
velocity error observed near the leading edge in the coarse mesh solution may be attributed
to the action of the velocity recovery algorithm in an edge region of high velocity variation.
Once the mesh is re�ned, convergence is soon obtained. An independent solution obtained
using �nite di�erence analysis is provided in Figure 7 to indicate the accuracy of the results.
This example demonstrates that even for obstacles with low aspect ratio, accurate solutions
can be obtained using the scaled boundary �nite-element method.

5.3. Flow around a square cylinder

The analytical solution for the �rst example is smooth in both the primary quantity (the
potential) and the derived quantity (the velocity). The third example is a square cylinder
in a uniform �ow. In this case the correct solution contains singularities in the velocity
�eld at the corners. The symmetry of the problem allows one quarter of the domain to be
modelled.
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Figure 7. Tangential velocity computed over the NACA 0012 wing section (Example 2).
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Figure 8. Substructured model for Example 3, �ow around a square cylinder.

A key feature of the scaled boundary �nite-element method is its ability to accurately model
singularities at the scaling centre. For this reason, the cylinder corner is taken as a scaling
centre. However, a domain containing the scaling centre must be bounded, so this example
requires the solution domain to be substructured into a bounded domain and an unbounded
domain, as indicated in Figure 8. The scaling centre for the unbounded domain is taken as the
origin, while the scaling centre for the bounded domain is taken as the corner of the cylinder.
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Figure 9. Computed variation of potential along the surface of the square cylinder.

Three-noded line elements are used to discretize each scaled boundary domain. The coarse
mesh is indicated in Figure 8. Two elements are used to discretize the unbounded domain,
and four elements are used to discretize the bounded domain. Intermediate and �ne meshes
are constructed from this model by binary subdivision.
The variation in potential computed over the surface of the square cylinder is presented in

Figure 9. Even the coarsest mesh provides excellent results. The potential is discontinuous at
the corner, and this discontinuity is reproduced accurately. The variation in tangential velocity
around the corner is shown in Figure 10. Again, even the coarsest mesh provides an excellent
approximation, and the computed velocity contains a true singularity at the corner. In contrast,
even after removing the singularity (and employing a similar subdivision into bounded and
unbounded domains) the boundary element approach of Lesnic et al. [11] requires 90 elements
over the quarter cylinder to achieve accurate results. Two �nite di�erence solutions are also
plotted in Figure 10. The coarse grid (80× 80) leads to a poor approximation of the velocity
variation in the vicinity of the corner, while the results of the �ne grid (320 × 320) show
good agreement with the scaled boundary �nite-element results, except very near the corner.
The slow rate of convergence of the �nite di�erence method is in stark contrast to that of the
scaled boundary �nite-element method.
The excellent results obtained in this example, even for the very coarse mesh, may be at-

tributed to the use of side-faces to model the boundaries of the obstacle. The solution obtained
by the scaled boundary �nite-element method is analytical along these side-faces. In the �rst
two examples the boundaries of the obstacle were discretized. This example demonstrates the
level of accuracy that can be achieved by taking advantage of the key features of the scaled
boundary �nite-element method.

5.4. Flow around two square cylinders

The fourth example computes the �ow around two square cylinders in close proximity. This il-
lustrates how substructuring allows the technique to solve interaction problems. The horizontal
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Figure 10. Computed variation of tangential velocity along the surface of the
square cylinder of Example 2.
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Figure 11. Model for the two square cylinders of Example 4, consisting of four bounded
subdomains and one unbounded subdomain.

axes of symmetry of the cylinders are taken to coincide, and one half of the symmetric prob-
lem modelled. The trailing cylinder is 50% larger than the leading cylinder. The model con-
sists of four bounded subdomains and one unbounded subdomain, as illustrated in Figure 11.
As the accuracy of a rather coarse mesh is established by Example 3, only a coarse mesh
is used to solve this problem. The variation of tangential velocity computed around the two
cylinders is plotted in Figure 12. The singularities at the corners are evident, and the interac-
tion between the two cylinders is demonstrated clearly by the reduction in velocity along the
side of the leading cylinder. The accuracy of these results is established by comparison with
�nite di�erence results obtained using a 0:1a grid extending a distance 20a from the origin
in each direction. These results are also plotted in Figure 11. Excellent agreement is evident,
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Figure 12. Computed variation of tangential velocity over the square cylinders of Example 4.

except very close to the corners, where the scaled boundary �nite-element results are clearly
superior.

6. CONCLUSIONS

This paper applies the scaled boundary �nite-element method to problems of potential �ow
around obstacles of arbitrary shape. Bodies such as those addressed by Cheng and Liu [17]
can be handled. A weighted residual derivation of the method for the solution of Laplace’s
equation is presented, and the inclusion of the appropriate boundary conditions at in�nity
considered. Computation of �ow around a circular cylinder illustrates excellent agreement
with the analytical solution and rapid convergence. Comparison with the boundary element
results of Lesnic et al. [10] indicate that the new method obtains increased accuracy and more
uniform convergence with increasing mesh density. The ability of the method to compute �ow
around shapes of practical importance is illustrated by application to the NACA 0012 wing
section. Problems with singularities in the velocity �eld are handled accurately and e�ciently
by using bounded subdomains with the scaling centre located at the singular points. This
approach is shown to accurately compute the �ow around a square cylinder with very few
elements. The application of substructuring techniques is illustrated by computation of the
interaction between two square cylinders in uniform �ow.
Overall the features of the scaled boundary �nite-element method are shown to make it

ideally suited to the analysis of potential �ow around blu� and streamlined obstacles.
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APPENDIX A: TRANSFORMATION TO THE SCALED
BOUNDARY CO-ORDINATE SYSTEM

The scaling equations relating the Cartesian co-ordinate system to the scaled boundary co-
ordinate system are

x= x0 + �xs(s) (A1a)

y=y0 + �ys(s) (A1b)

Derivatives in the scaled boundary co-ordinate system can be related to derivatives in the
Cartesian co-ordinate system using the Jacobian matrix.
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 (A2)

Taking derivatives of Equations (A1) with respect to � and s separately, substituting into
Equation (A2) and rearranging
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Inverting yields 
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[
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 (A4)

where the Jacobian on the curve S(� = 1) is

|J |= xs(s)ys(s); s−ys(s)xs(s); s (A5)

and the incremental ‘volume’ is

d�= |J |� d� ds (A6)

For convenience the operator ∇ is expressed as

∇= b1(s) @@� + b2(s)
1
�
@
@s

(A7)

where, from Equation (A4),

b1 =
1
|J |

{
ys(s); s

−xs(s); s

}
and b2 =

1
|J |

{−ys(s)
xs(s)

}
(A8)
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